当前大数据已经在诸多领域得到应用,与我们的生活息息相关。例如,打开网络我们就会收到关于购物的推荐广告,进入电子邮箱时就会看到系统自动识别的垃圾信件等,这些现象背后均与大数据和人工智能密不可分。
国际关系数据存在特殊性
大数据顾名思义是数据量巨大的数据,有时也被称为海量数据。随着互联网技术的应用和普及,人类社会中产生了越来越多的数据,例如网络发言、网络购物、图片、音频和视频等。对于这些数据的挖掘和研究,有助于科研的创新和企业的发展。因此,我们可以看到大数据以及人工智能算法在我们生活中的诸多方面得到了普遍应用。
大数据在国际关系领域的应用现状
由于专业特性,大数据在当前的国际关系研究领域似乎较少有用武之地,然而随着数据挖掘的深入,也有一些国际关系研究开始将大数据作为研究的变量之一。首先,比较具有应用前景的有GIS地理信息系统(Geographic Information System)提供的地理分布数据有助于学者对空间数据进行建模,使既往研究中长期被忽视的地理因素得以重回大家的视野。其次,全球夜间灯光数据也具有应用价值,该数据由美国国防气象卫星计划(DMSP)的卫星观测所得,比较客观地反映了各国/地区的生产、生活状况,可以替代GDP成为度量经济活动的可行指标之一。
算法应用提高预测准确率
在传统回归方法中,统计模型的假设检验需要对样本数据的分布做出假定,例如正态分布、卡方分布和F分布等,从而进行进一步计算。这一方法的缺陷是,如果样本数据的分布不符合假定,则结论不一定成立。大数据中常用的机器学习算法主要采用交叉验证,将数据分为训练集和测试集两类,先用训练集建模,然后用测试集加以检验,可以规避传统回归中对分布假定带来的不足。目前国际关系学界也应用了一些算法进行预测,例如朴素贝叶斯模型、Logistic模型、隐马尔可夫模型、神经网络等,取得了较好的预测准确率。
在大数据时代,数据挖掘技术使研究人员可以获得大量过去难以得到的数据,这对国际关系学科的创新具有重大推动作用。然而,根据国际关系研究的特点,大数据及相关算法在国际关系领域存在应用界限,我们一方面要充分利用新技术带来的研究创新空间,另一方面也不必过度迷信大数据,正确认识到大数据的优势与不足,推进学术创新。